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Introduction

® Holographic correlators

* Basic observables for exploring and exploiting the AdS/CFT correspondence.

* They encode a wealth of theory data which can be extracted using conformal block
decompositions.

* They can also be viewed as scattering amplitudes in curved spacetime, and therefore can be
used to explore generalizations of various properties of flat-space amplitudes.

* Current status: Two decades into studying AdS/CFT, our knowledge of these objects is still
very limited! Compared with flat-space scattering amplitudes, we certainly know much less

about them.



e Difficult to compute

» The traditional diagrammatic method is a mess: all quartic vertices for AdSs X S > 1IB SUGRA
take 15 pages to write down | ].

* A better strategy is bootstrap: so far all tree-level 4-pt functions of all KK modes are known iIn
all maximally susic theories (AdS, X S’, AdSs X S°, AdS, X S |

], and in half maximally susic theories for those correspond to super gluons
| ]. Also results for higher-pt |
| and loops |

.

* But this strategy also faces increasing technical challenges. It’s very possible that
superconformal symm and consistency conditions will stop fixing everything at some point.

® Other independent guiding principles?



® [ntegrability?

e The paradigmatic example: 1IB string theory AdSs X S° dual to 4d N=4 SYM, known to be
integrable at the planar level. Can integrability be of help?

* Not clear at the moment: the standard integrability techniques for studying N=4 SYM have
difficulties at the SUGRA limit.

* Currently there are no results for correlators of short 1/2-BPS operators.

® |n this talk...

e \We do not offer a solution.

 However, | will point out a new connection with integrability which may hopefully shed some
light on it.



Main characters: On the one hand, we consider the following infinite family of Witten diagrams in
a simple setup.
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* Simple holographic models of boundary (or interface) CFTs, e.g., probe 1 /- \ A
branes. ( )
* When all operators are inserted at the boundary these are just standard , \/ 3

D-functions.




On the other hand, let us consider the following conformal integrals in flat space.

* A generalization of the box diagram

D-dimensional conformal integral
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* Fishnet diagrams appear in an integrable deformation of N=4 SYM | ].

This motivated the study of integrability properties of these integrals.

* Yangian invariance was first proven for the massless case for n=4,6, then streamlined and
proven in the massive case for all n | ].



1%" observation
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* These two objects are essentially the same.

* The conformal integrals are Yangian invariant | ]. Hence these
Witten diagrams also have Yangian symmetry.



2nd gbhservation

* The Witten diagrams satisfy a web of differential
recursion relations, generalizing those of D-functions.
These relations shift the external conformal dimensions.

(A + LA, A+ 1LA) (A + LA+ LA+ LA, + 1)

* Different ways of changing dimensions must agree. This
leads to consistency conditions.
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* We will show that the Yangian invariance condition is

equivalent to whole set of consistency conditions.

* The latter can written down in a totally explicit way. They have a simpler form and are valid for
any number of points.



In the rest of the talk:

® Prove the equivalence between Witten diagrams and conformal integrals.

® Recursion relations, consistency conditions. Sketch the proof of the
equivalence of consistency conditions and Yangian invariance.

® Possible implications.



Wn <_)Ilfl

In fact, the BCFT contact diagrams were already systematically studied for totally different reasons
[ ]. So we can just borrow results from there.

Using Schwinger parameterization and integrating out the AdS coordinates, we get
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Note the integral is essentially independent of d! More precisely, all dependence is in the factor C,
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We define the d-independent correlator W = C'w.



Wn <_)Ilfl

Now let’s take a step back and integrate out only the radial coordinate of AdS. We find instead
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We can use the d-independence to set d = D + 1 where we recall D = Z A.. Then we get
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which is noting but [, after using Schwinger parameterization! J dPx,
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Recursion relations

Let us return to the representation
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Taking derivatives w.r.t. sz and m; gives the following differential recursion relations
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N; are derivative w.r.t. P;; and m,
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Recursion relations

For these relations to be mutually compatible, we need to 0. W 2AiAj W
have the following highly nontrivial consistency conditions d—1— zi A; 1A, —A 4
2
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A natural question: do they have a symmetry origin”? The answer Is yes!



Yangian invariance

The D-dimensional integral has an SO(D,2) conformal symmetry, generated by
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The Yangian is an infinite dimensional extension generated by the above /level-zero generators and
the following level-one generators | ]
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Higher levels are generated by commutators. Because [, is annihilated by both level-zero and
level-one, the invariance under higher-level generators is guaranteed.



Yangian invariance

Moreover, J“ transform in the adj rep of level-zero. So invariance under the whole Yangian boils

down to just that of one generator, which we can choose to be P*.

We also have permutation symmetry. As a result, annihilation by P# is equivalent to annihilation by

the following two-site operator /Isfk forany |, k [ ]
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Furthermore, it was observed that [ is invariant under an extra level-one operator P;.’k oxtra
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The full Yangian invariance condition is:

P“I =0, P© I =0.
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Yangian invariance

We claim that the invariance condition is equivalent to the consistency conditions. We will only
sketch the proof for the simpler massless case with m. = (). The proof for the massive case is
similar but technically more complicated.

In the massless case, the operator IU); vanishes. Therefore, there is only one class of consistency

conditions which remains. Also the extra level-one operator P;.’k oxtra vanishes automatically.

Consequently, we need to prove

(00 — 0z 0)W =0 — ﬁ;‘k’W =0



Yangian invariance

To show this, we first write P;’k explicitly as
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where X*H¥ = X N+ x 77””’ — xkr]”p Since the Witten diagrams are functions of P, the

derivatives can be written in terms of those of Pl-j
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Yangian invariance

By using
1
xt
with TZb — 5 . we can write the action of P/" in the form of
ab
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The coefficients E_, have the same dimensions as W and the structures Ta are independent.

b
Yangian invariance then requires
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Yangian invariance

These coefficient functions are
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The condition £;; = 0 gives the consistency condition (O;; 0y, — 0;0;)W = 0. The other

conditions can be shown to vanish after using this condition and conformal invariance.

The massive case is similar: E; = 0 gives (O;;0;, — 0, 0;)W = 0, and E;; = 0 gives

.0, W =2m>0,0,W. E;. = O yields no new relations. The remaining condition
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Conclusions and outlook

® A new connection between integrability and holography.

e Contact Witten diagrams are Yangian invariant conformal integrals in flat
space.

® An array of differential recursion relations. Their consistency conditions are
the same as the Yangian invariance condition.

Many things to explore!



® -rom the consistency conditions

- In some simple cases, Yangian invariance was shown to completely determine the conformal
integrals | ].

- In terms of consistency conditions, this condition now takes a simpler form the redundancies
have been removed. We can use them to explicitly compute more complicated integrals.

- What’s the structure of these constraints as a system of differential operators?

- Does that lead to new insight about integrability?



® Beyond contact diagrams: integrabillity properties of exchange diagrams.

Certain exchange diagrams and conformal integrals are known to be the same |
]. The Yangian invariance of these two-loop integrals are
also proven | ]. E.q.,

2B_L\ A X, Xy A =1 for all legs

However, the general story is not yet clear.



® Supersymmetry and super-Yangian invariance.

- Here we have restricted ourselves to the bosonic case. We can also consider the Yangian of
PSU(2,2|4) and study the Yangian invariant correlators.

- Presumably, these will be some “super D-functions”.

- |t would be very interesting to see if the super Yangian invariance condition can give rise to
an alternative derivation of the general results of holographic correlators on AdSs X § .

[ |



Thank you!



